Hybrid Genetic Algorithm and Mixed Crossover Operator for Optimizing TSP
نویسندگان
چکیده
Genetic Algorithms (GAs) are the search algorithms and optimization techniques based on the mechanics of natural selection and natural genetics. They sort out interesting areas of a space quickly but without guaranteeing more convergence. So GA may be mixed with various local problem-specific search techniques to form a hybrid that will combine the globality and parallelism of GA with more convergence behavior of local search technique. In this paper, a simple genetic algorithm and a genetic algorithm with changing crossover is used. This paper proposes hybrid algorithms in which hill climbing is applied on each individual selected by selection operator for reproduction. The experiments have been conducted using three different inputs from TSPLIB provided by Heidelberg University and implementation is carried out using MATLAB. The result shows that the proposed algorithms perform better than the simple genetic algorithm in terms of producing more optimal results.
منابع مشابه
AN EFFICIENT CROSSOVER OPERATOR FOR TRAVELING SALESMAN PROBLEM
Crossover operator plays a crucial role in the efficiency of genetic algorithm (GA). Several crossover operators have been proposed for solving the travelling salesman problem (TSP) in the literature. These operators have paid less attention to the characteristics of the traveling salesman problem, and majority of these operators can only generate feasible solutions. In this paper, a crossover ...
متن کاملOPTIMAL OPERATORS OF GENETIC ALGORITHM IN OPTIMIZING SEGMENTAL PRECAST CONCRETE BRIDGES SUPERSTRUCTURE
Bridges constitute an expensive segment of construction projects; the optimization of their designs will affect their high cost. Segmental precast concrete bridges are one of the most commonly serviced bridges built for mid and long spans. Genetic algorithm is one of the most widely applied meta-heuristic algorithms due to its ability in optimizing cost. Next to providing cost optimization of t...
متن کاملSolving Travelling Salesman Problem with an Improved Hybrid Genetic Algorithm
We present an improved hybrid genetic algorithm to solve the two-dimensional Euclidean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local searc...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملHill Climbing Based Hybrid Crossover in Genetic Algorithms
Genetic Algorithms are biologically inspired optimization algorithms. Performance of genetic algorithms mainly depends on type of genetic operators – Selection, Crossover, Mutation and Replacement used in it. Crossover operators are used to bring diversity in the population. This paper studies different crossover operators and then proposes a hybrid crossover operator that incorporates knowledg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015